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Abstract. Complexity raises uncertainty and uncertainty calls for distinct actions to reduce complexity and to establish an overview (i.e. order). This paper gives a review on recent developments in a branch of research that aims at gaining insight into the complex interweavements of relational data (graphs). It discusses a set of methods for simultaneously clustering nodes and partitioning edges called blockmodeling. Originally, blockmodeling was developed for applications in sociometry and psychometry. Recent results of research, however, indicate the potentials of blockmodeling for econometrics, input-output analysis in particular. Even though the methods are in their infancy, it becomes apparent that blockmodeling provides an interesting way to generate information to support the coordination of relations between economic units. This might eventually benefit application fields of methods of input-output analysis such as supply chain management. Extracting structural information from relational data appears to become an important capability in an increasingly ‘networked’ economy and a precondition for supporting business collaboration. Blockmodeling and especially a branch of blockmodeling research termed ‘generalized blockmodeling’ might enhance the instruments of input-output analysts that are geared to these – usually both exploratory and confirmatory – structure analytical purposes. 

1. Introduction

Econo​mic developments such as globalisation and the increasing differentiation of processes for value genera​tion that both are extensively supported by information technologies lead to a progressive as well as world-spanning division of labour. Economic units are subject to these developments and due to the division of labour also reliant on coordination to collaborate and generate value. As the degree of division of labour rises, so does the need of coordination for economic units and, consequently, the set of (actual and potential) relations that are or could be established for the purpose of collaboration  (Weber & Fröschl, 2006). Evidently, this rising complexity as well as the capabilities of present-day information systems to capture ever-growing extracts of these high-dimensional data also influence the analysis of economic relations that exhibit the economic transactions made. This development poses a considerable challenge for the analysts that have to deal with these intricate and vast amounts of relational data. Methods and procedures are needed that help to condense data to retrieve relevant information. In the following, a contribution to this objective is presented to input-output analysts that might also serve as a starting point for considerations on the promotion of value generating linkages in supply chain management. Applications could be conceived that assist economic units to mitigate difficulties when navigating through the transaction system in an increasingly dynamic economic environment by supporting business collaboration. Subsequently, a set of methods for clustering relational data is discussed, starting with a general introduction including definitions of types of equivalence relations and ideal blocks. Algorithms for the generation of ‘optimal’ partitions of vertices and edges for binary and valued graphs are then outlined and illustrated by simple examples. 

2. Blockmodeling – clustering and partitioning of relational data

The identification and categorization of linkage patterns in relational data is an insightful procedure that facilitates the analysis and interpretation particularly for graphs (i.e. relational data) with a relatively high number of vertices, e.g. input-output data. Building upon results of research in mathematical psychology and mathematical sociology that was conducted primarily in the 1970s, recent research on methods for this purpose in the field of social network analysis focuses on a specific approach that simultaneously clusters the vertices of a graph and partitions the relations between the vertices in so-called blocks. This approach – ‘blockmodeling’ (Breiger et al., 1975; White et al., 1976) – evolved over the years starting from an indirect clustering procedure that builds clusters based on structural (Lorrain & White, 1971; Burt, 1976) and later even regular (White & Reitz, 1983) equivalence of vertices to an approach that incorporates indirect and in particular also direct methods for building blockmodels (Batagelj et al., 1992a; 1992b) with generalized concepts of equivalence (Doreian et al., 1994; Batagelj, 1997). 

Structural equivalence of two vertices v, w ( V  in a (directed) graph G(V,E) can be identified in cases where every (directed) relation of vertex v can be matched to any other vertex x ( V  by an (equally directed) relation of vertex w to vertex x. This means that for every edge (v,x) and/or (x,v) a corresponding edge (w,x) and/or (x,w) exists with v ( w. In the blockmodel of a directed graph, the structurally equivalent vertices are presented in a consolidated view. Regular equivalence is the generalization of structural equivalence. In a (directed) graph G(V,E) two vertices v, w ( V  are regularly equivalent if every (directed) relation of v to a vertex x ( V is matched to an (equally directed) relation of w to a vertex y ( V. That is, for an edge (v,x) and/or (x,v), there also exists the edge (w,y) and/or (y,w), with v ( w. Both types of equivalence can be seen as a starting point for the definition of groups of vertices. For instance, the vertices x and y as well as the vertices v and w could be grouped and then the groups could be related to each other. 

2.1. Generating blockmodels
In recent years, a direct method for computing blockmodels was (further) elaborated that is called ‘generalized blockmodeling’ (Doreian et al., 2004; Doreian et al., 2005;  building upon Batagelj et al., 1992a; 1992b; Doreian et al., 1994; Batagelj, 1997). Particularly, Doreian et al. (2004) provide an interesting enhancement of this branch of research. They introduce an extension of the (direct) blockmodeling approach that enables the separate treatment and classification of the relations of a vertex of a graph to its ancestor or successor vertices and therefore provide a way to cluster ancestor and successor vertices as well as to partition the edges between these vertices differently. This is an idea that was also discussed by Borgatti & Everett (1992). It enables blockmodeling of graphs with disjoint sets of ancestor and successor vertices – so-called ‘two-mode data’ – as well as of graphs with one set of vertices (‘one-mode data’) with each vertex having an ancestor and a successor role. A central challenge for direct, ‘two-mode’ blockmodels thereby is the necessity to ‘find structure’ of ancestor and successor vertices with only a variable subset of the corresponding set of vertices (successor or ancestor vertices) determining the group (cluster) membership. This is a substantial difference to conventional clustering approaches that start from (two) disjoint sets and their relations with one set encompassing the observation units (vertices) while the other set contains the characteristics of the observation units. Using measures of (dis-)similarity, these two-mode data are then transformed to a distance matrix with the dimension of the number of observation units times the number of observations units. This distance matrix can be seen as one-mode and forms the basis for the clustering procedure chosen. 

With this in mind, the distinction between indirect and direct blockmodeling can be explained. Indirect blockmodeling approaches (e.g. Breiger et al., 1975) identify certain attributes for each vertex – usually structural characteristics such as degree, reachability of nodes or distance indices to successors or ancestors – that form the basis for the generation of a distance matrix. This procedure corresponds to a transformation of the original one-mode data to two-mode data (vertices and their characteristics) to retransform the data back to a one-mode structure (a distance matrix). Based on the distance matrix, conventional clustering methods are then employed. The direct methods for blockmodeling (commencing with Batagelj et al., 1992a), however, avoid this detour. Starting from a specification of an ideal blockmodel which incorporates certain types of blocks, that vary according to the type of equivalence chosen, an iterative optimization procedure is initiated to minimize the discrepancy of the investigated empirical blockmodel, i.e. the blocks obtained by grouping the vertices, and thus re-arranging the columns and rows of the empirical adjacency matrix, to the ideal blockmodel. Two approaches can be distinguished when specifying an ideal blockmodel: (i) an explorative (hypotheses-generating) approach that merely involves the definition of the block types permitted as well as of the number of clusters or (ii) a confirmatory approach that additionally implies the specific alignment of some or all block types. This enables the testing of hypotheses on the structure of the relational data. With both variations of direct blockmodeling the data is matched to an ideal structure which stands in contrast to indirect blockmodeling that defines clusters (groups of vertices) and blocks entirely ‘data-driven’, i.e. in a way that suits the data best, and generates hypotheses about the block structure without any model pre-specification.  

2.2. Ideal block types

The definition of equivalence relations is an integral precondition for the specification of an ideal blockmodel as it confines the block types admissible. These block types can be understood as templates for the ideal blocks of the model. Block types for structural equivalence are null blocks or complete blocks, while for regular equivalence the standard block types are null blocks and regular blocks. However, in a generalized blockmodel, additional block types can be defined (Doreian et al., 1994; Batagelj, 1997)). Examples and descriptions of such blocks are listed in Table 1. 

<Insert: Table 1>

The relationship of the block types presented are visualised in Figure 1. It can be seen that the definition of block types constitutes a certain hierarchy. Among the block types for regular equivalence, the row-dominant and/or column-functional and the column-dominant and/or the row-functional blocks permit the finest level of distinction. Therefore, these four types build the most specific level of the block type hierarchy. According to their definitions, the block types row-dominant and row-functional as well as column-dominant and column-functional are mutually exclusive. The second tier of the hierarchy in Figure 1 is formed by the block types column-regular and row-regular. These types either appear independently from the most specific level as their definition is more general, or they are derived from the corresponding types from the finest level of the hierarchy. Thus, a row-dominant block or a column-functional block can also be classified as column-regular. Similarly, a column-dominant block or a row-functional block meets the requirements for row-regularity. However, a block that is classified as row-dominant is not necessarily row-regular. Likewise, a column-dominant block cannot automatically be categorized as column-regular. As can be told from Figure 1, the most general block type in the hierarchy is the regular block. It can directly be derived from the joint occurrence of column-regularity and row-regularity. Moreover, it is possible to deduce it indirectly through a combination of types of blocks that can be found in the third (finest) level of the hierarchy. For instance, the joint classification of a block as column-functional and row-functional reveals that it is both, row-regular and regular. Equally, a column-dominant and row-dominant block is not only column-regular and row-regular, but also regular. In this context, the complete block, a special case of the regular block that is used for the identification of structural equivalence, has to be mentioned. Evidently, it is both, (outright) column- and row-dominant as well as regular. A further special case of the basic block typology in Figure 1 is the null block, which is in contrast to all the block types mentioned so far. 

<Insert: Figure 1>

Building upon the knowledge of equivalence relations and the block types that can be derived from these equivalences as well as the number of clusters desired, an ideal blockmodel for (binary) relational data can be defined as follows (Table 2). 

<Insert: Table 2>

3. Blockmodeling of binary data

3.1. An algorithm for direct one-mode blockmodeling
Direct blockmodeling basically quantifies and minimizes the divergence between an empirical and an ideal blockmodel. To this end – subsequent to the designation of an ideal blockmodel –  an objective function has to be defined for the optimization procedure as described in formula (1) (Batagelj et al., 1992a) for direct one-mode blockmodeling. 
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The objective function Z(C) measures the discrepancy between the investigated empirical blockmodel R(C) and the ideal model B(C), with 
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. The number of clusters (groups of vertices)  k = |C| is determined by the pre-specified ideal blockmodel. Initially, the ideal model is only defined in terms of the number of clusters and the block types allowed. Then, through the assignment of vertices to clusters, ideal blocks of the same dimension as the empirical blocks are yielded that are formed with regard to the admissible block types.

In case of a confirmatory blockmodeling scenario, the objective function is defined as the sum of discrepancies z(Ci,Cj) between each empirical block r(Ci,Cj) ( R(C) and its corresponding ideal block b, whereas in an exploratory scenario, the discrepancy, and thus, the objective function, is based on the set of feasible ideal blocks B(Ci,Cj). In the former scenario, the discrepancy z(Ci,Cj) of an empirical block r(Ci,Cj) to a corresponding ideal block b is simply derived from the direct comparison of these two blocks, i.e. it equals the measure of discrepancy ((r(Ci,Cj),b). However, in the exploratory scenario the discrepancy z(Ci,Cj) is calculated with reference to the set of feasible ideal blocks B(Ci,Cj), i.e. z(Ci,Cj) is defined as the minimal discrepancy ( between the empirical block r(Ci,Cj) and all ideal blocks b ( B(Ci,Cj) in line with the admissible block types as specified in Formula (2).
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Two examples for calculating the discrepancy (  are given below. The suggestions follow the ideas of Batagelj et al. (1992a) and (1992b). 
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(3)

Formula (3) features the designation of a blockmodel for structural equivalence. It calculates the sum of the absolute deviations between the cell values rvw of the empirical block and the corresponding cell values bvw in the ideal block. This implies equal weights for positive and negative deviations. Alternatively, different weighting coefficients can be assigned.
For regular equivalence, Formula (4) can be applied. 
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(4)

According to Formula (4), the discrepancy (  is determined either as the sum of the cell values rvw in the empirical block (if the ideal block b is null) or as the sum of (i) the product of the number of zero columns and the total number of rows and (ii) the product of the number of zero rows and the total number of columns (if the block type for b is regular). 

Building upon the definition of discrepancy, the optimization problem can be described as follows. For a graph G(V,E), the vertices v ( V shall be clustered in groups of vertices Ci ( C* under simultaneous partitioning of the relations e ( E between the vertices in a way that the objective function Z(C) is minimized (Formula (5)).
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An iterative optimization procedure solves this problem by starting from an initial (usually random) clustering C. This clustering is replaced by a clustering C´ that lies in the neighbourhood of the current clustering C if the objective function value of C´ is smaller than the corresponding value of the current clustering C. Doreian et al. (1994) recommend two transformations in order to find new clusterings, either the shifting of a vertex from one group of vertices to another or the exchange of two vertices between two groups. This procedure is repeated until the objective function value reaches a minimum. To avoid local optima, this routine is usually repeated severalfold with varying initial clusterings.

3.2. An algorithm for direct two-mode blockmodeling 
The designation of direct (generalized) blockmodels offers interesting opportunities to discover structure and to validate hypotheses on a certain production system that can condense in the relational data that reach beyond the analytical potential of methods such as triangulation
 or simple graph theoretic ratios. This is especially true if the blockmodel classifies vertices and partitions the relations by differentiating the role of the vertices as ancestors and successors. For this reason, a direct blockmodeling approach is required that can deal with two-mode data, i.e. data that relates different vertices or vertices with differential interpretations
. 

In a two-mode blockmodel, the definition of the objective function for the optimization procedure changes as depicted in Formula (6) (Doreian et al., 2004). 
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Opposed to the one-mode approach, the ancestor and the successor vertices are grouped in separate cluster sets. CZ contains the set of (empirical) groups of ancestor vertices, whereas CS comprises the set of (empirical) groups of successor vertices. C is the tuple of CZ and CS. The cardinalities of the groups of vertices k = |CZ| and h = |CS| are defined by the pre-specified ideal blockmodel. For determining the discrepancy ( between the empirical blocks 
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The optimization problem for the two-mode approach can be described as follows. The vertices of a graph G(V,E) that is made up of V = (V1,V2) and e = (v,w) ( E with v ( V1, w ( V2, are to be clustered to 
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. Simultaneously the relations e ( E of this graph are to be partitioned in a way that minimizes the objective function Z(C) (Formula (8)).
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Eventually, the two-mode approach applies the same iterative optimization procedure as one-mode blockmodeling. 

Assumptions on the ideal blockmodel require – at least partial – (prior) knowledge about the structure of the relational data, i.e. the block types that are admissible as well as the number of clusters. However, if one lacks this a priori information, approaches have to be pursued that help to identify an ideal blockmodel and hence facilitate exploratory blockmodeling. Brusco & Steinley (2006) present such an approach that does not require any prior structural knowledge and that provides a basis for generating a blockmodel for both, one- and two-mode relational data. Their approach builds upon a column by column and row by row permutation of a quadratic or rectangular adjacency matrix that aims at partitioning the relational data into homogeneous blocks. Thereby, clusters are not directly identified, but can – for instance – be derived from the visualisation of the results. The same is true for the determination of equivalence relations or block types of the blocks that were formed. Unfortunately, the computational performance of this approach that can be categorized as a branch and bound method is dissatisfactory with graphs that have more than 40 vertices, as Brusco & Steinley note by referring to alternative, heuristic methods that might improve the performance of this approach in the future.

3.3. An illustrative example for direct two-mode blockmodeling 

The generation of a two-mode blockmodel shall subsequently be demonstrated by a simple example of the identification of structural equivalence. The formulas presented above were therefore implemented in R (R, 2007) to enable the explorative designation of a two-mode blockmodel by an iterative shifting of vertices. Starting point is a binary adjacency matrix that consists of the row vertices V1 = {a, b, c, d, e, f} and the column vertices V2 = {A, B, C, D, E} and relations as depicted in Table 3.

<Insert: Table 3>

As the structural equivalence of this adjacency matrix shall be examined, the algorithm will optimize with reference to the (ideal) block types null and complete. The number of row- and the number of column-clusters that is assumed for this demonstration is 3. (It has to be noted that there could also be different numbers for row- and column-clusters as the algorithm follows a two-mode approach.) Starting from an initial random clustering as shown on the left-hand side of Figure 2, the algorithm produces a result that perfectly corresponds to an ideal blockmodel for structural equivalence (right hand side of Figure 2). The clusters 
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 form complete blocks and hence are structurally equivalent, while the remaining combination of row- and column-clusters generates null blocks. The objective function is 0, there is no discrepancy and the assumption of 3 row-clusters and 3 column-clusters is correct. Of course, this is just an example for the purpose of demonstrating the approach. Larger and more complex data would make it more difficult to find the ideal number of row- and column-clusters and would also involve a higher number of optimization cycles to find a satisfactory solution. 

<Insert: Figure 2>
4. Valued blockmodeling for input-output analysis 

4.1. Block types and algorithms for valued blockmodeling
Evidently, domains that deal with valued relational data (weighted graphs) such as input-output analysis might object to binary blockmodeling as the ‘binarization’ of data leads to a considerable loss of information. Moreover, it seems to be difficult to define an appropriate parameter (e.g. greater than 0 or the mean weight of the edges) for the transformation of valued to binary relational data without influencing the solution substantially. Nevertheless, blockmodeling that originates from applications dealing with strictly binary data (Breiger et al., 1975) can facilitate the analysis of valued data as well. This statement gains in importance in light of recent research contributions to valued (generalized) blockmodeling that enable valued blockmodeling without (significant) loss of information such as Žiberna (2007) or Weber & Denk (2007). By building upon generalized blockmodeling (Doreian et al., 2005), Žiberna (2007) develops two alternative approaches to blockmodel valued relational data. These are (i) f-value and (ii) homogeneity blockmodeling. f-value blockmodeling (Žiberna (2007) refers to it as ‘valued blockmodeling’) can be understood as a straightforward extension of binary generalized one-mode blockmodeling that could readily be expanded to a two-mode approach. It extends the equivalence relations and consequently the block type definitions by replacing the stipulations for 1 with analogous stipulations for the parameter m and by allowing for a function f of the cell values in a block that meets the parameter m. Examples for these altered block type definitions can be found in Table 4; the functions f  that could be used for the valued blocks are, for instance, min(), max(), sum(), or mean(). A further modification that is necessary to realize f-value blockmodeling concerns the calculation of discrepancy between the empirical and the ideal block types. Žiberna (2007) provides a distinct discrepancy criterion for each of the altered block types. For a f-regular block, for instance, the discrepancy is derived from the deviations of the function f evaluated for each column and each row to the parameter m. More specifically, for each pair of a row vertex vk and a column vertex vl the differences 
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 are calculated. The discrepancy of the block is then computed as sum of the pairwise maxima of dk. and d.l over all pairs (vk,vl) for which the function f of the investigated row k of the investigated column l is greater than the parameter m. In essence, these are the main adaptations of the blockmodeling procedure for f-value blockmodeling. It has to be noted that – compared to binary blockmodeling –  a new issue has cropped up, viz. the determination of the parameter m. It therefore becomes necessary to introduce additional procedures to mitigate this problem, unless prior knowledge is available. 
<Insert: Table 4>

As an alternative to f-value blockmodeling, Žiberna (2007) suggests to search for blocks with a maximum homogeneity (‘homogeneity blockmodeling’) or minimum variability. Therefore, a measure has to be established that records the homogeneity or variability within a block such as the sum of squared deviations from the mean or the sum of absolute deviations from the median. Moreover, the definition of the ideal block types has to be adapted in a way that stresses the homogeneity (equality) of the main characteristic of the block type in question (Table 4). This redefinition entails the amendment of the discrepancy criterion for the block types as well. In comparison to both, f-value blockmodeling and binary blockmodeling for valued data, no additional parameters are needed for homogeneity blockmodeling and there is virtually no loss of information. These are considerable advantages of this method over f-value blockmodeling and binary blockmodeling of valued data. Still, this method is work in progress as Žiberna (2007) notes. Thus, he suggests that the result of homogeneity blockmodeling could be used as a starting solution for other approaches. 

Weber & Denk (2007) propose a two-mode approach for valued blockmodeling. They make use of block type definitions that allow for the mutual impact of vertices and therefore capture the magnitude of the ‘inbound’ and ‘outbound’ effects of vertices simultaneously. More emphasis is laid on block properties and cluster dependencies as opposed to properties and dependencies of vertices as featured in conventional blockmodeling. Consequently, their methodology is complementary to the ideas of generalized blockmodeling that are summarized in Doreian et al. (2005). As for Žiberna’s proposals, empirical studies that evaluate the expected benefits (and shortcomings) of the valued blockmodeling approach suggested by Weber & Denk (2007) are in an initial stage.  

4.2. An illustrative example for direct two-mode blockmodeling of valued data

Figure 3 presents a demonstrative application of valued two-mode blockmodeling that follows the homogeneity approach. From an input-output perspective, the (ancestor) vertices can be interpreted as a set of commodities (labelled ‘a’, …, ‘j’), while the (successor) vertices can be seen as a set of activities (labelled ‘A’, …,’H’). Evidently, the edges display the valued relations between these two sets of vertices. Starting from the valued adjacency matrix on the left-hand side homogeneous blocks are identified by using the sum of absolute deviations from the block median as measure of within block variability and max() as function f in the definition of f-regular blocks. In a max-regular block the maximum cell value should be the same for each row and column.

Experiments with different numbers of row- and column-clusters revealed the suitability of a blockmodel with 3 row-clusters and 4 column-clusters. The empirical blockmodel resulting from the optimization procedure is displayed on the right-hand side of Figure 3. Besides four null-blocks containing unrelated commodities and activities, one complete block was identified that is made up of three commodities with equal importance for the block activity. The remaining blocks are max-regular with different levels of cell values (relation weights) and discrepancies from the ideal max-regular blocks.

<Insert: Figure 3>
It has to be emphasized that two-mode blockmodeling can analogously be applied to (‘symmetric’) input-output tables (for instance tables with the dimensions commodities x commodities), i.e. the vertex set V1 can be equal to the vertex set V2 (V1 = V2) or – to put it differently – there is only one vertex set with two differing roles per vertex. 
5. Conclusion
This paper provides an overview of ‘(generalized) blockmodeling’, a set of methods designed to gain structural information from relational data, in order to facilitate the following up of this approach for input-output analysts. Due to recent enhancements of (generalized) blockmodeling, economic applications can be realized that might enrich particularly input-output analysis as well as application fields such as supply chain management. Blockmodeling could be furthered to an instrument that is able to analyse and reduce the complexity of economic relations that rises with the increasing availability of (transactional) data through information technology and the noticeable ‘networked’ economy. However, further research and improved algorithms are a precondition to fully exploit the potentials of blockmodeling for econometric applications. Particularly, large data sets exhaust the performance of present-day computer systems and could therefore be a starting point for advanced algorithms, but also the designation of blockmodels could be supported by specific routines and the available set of block type definitions might be extended. Nevertheless, (generalized) blockmodeling methods for the clustering and partitioning of relational data constitutes an interesting branch of research that provides an attempt to deal with the complexity inherent in data on (economic) linkages.
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Table 1: Examples of block types for blockmodels based on Batagelj (1997)

	adjacency matrix
	block type description
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	complete block

	
	In a complete block, all vertices are directly connected. That is, in binary adjacency matrix form, every cell of the block holds the value 1. Self-reference of vertices can be excluded from this as well as from the following definitions.

	
[image: image29.wmf]0

0

0

1

1

1

1

1

0

0

0

0

1

0

1

0

0

0

1

0

i

j

C

C


	regular block

	
	In a regular block, each row and column of the binary adjacency matrix has at least one cell with the value 1. In other words, each vertex is related to at least one other vertex. 
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	null block

	
	In a null block, there is no single pair of vertices that is connected by an edge. Therefore, the cells of a null block in a binary adjacency matrix are zero. 
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	row-dominant block

	
	A row-dominant block has the property that there is at least one row in the block that features the value 1 in each of its cells. Consequently, at least one ancestor is related to every successor vertex that is assigned to the block. 
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	row-regular block

	
	A row-regular block holds at least one cell entry with the value 1 in every row of the block. In other words, every ancestor vertex is connected to at least one successor in the block.
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	row-functional block

	
	A row-functional block exhibits the value 1 exactly once in each row. That is, every ancestor is exclusively connected to one single successor. The row sums of the block in the form of a binary adjacency matrix hold the value 1.
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	column-dominant block

	
	In a column-dominant block there is at least one column that is completely covered with the value 1. In other words, at least one successor is related to all (other) ancestors in the block. 
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	column-regular block

	
	In a column-regular block, the sum of each column is at least 1. Therefore, every successor is connected to at least one ancestor in the block. 
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	column-functional block

	
	In a column-functional block, every column exhibits the value 1 exactly once. That is, every successor is exclusively related to one single ancestor in the block. The sum of every column is exactly 1. 


Table 2: Example of an ideal blockmodel

	
	C1
	C2
	C3
	C4
	C5

	C1
	complete
	regular
	column-
regular
	row-
regular
	null

	C2
	null
	complete
	row-
functional
	null
	column-
regular

	C3
	regular
	null
	null
	null
	row-
functional

	C4
	row-
regular
	row-
regular
	null
	row-
functional
	null

	C5
	column-
regular
	null
	row-
regular
	row-
functional
	null


Table 3: Sample data for two-mode blockmodeling

	
	A
	B
	C
	D
	E

	a
	0
	0
	0
	0
	0

	b
	0
	0
	1
	0
	1

	c
	0
	0
	0
	0
	0

	d
	1
	0
	0
	1
	0

	e
	0
	0
	1
	0
	1

	f
	1
	0
	0
	1
	0


Table 4: Examples for altered block types according to Žiberna (2007)
	
	f-value blockmodeling
	homogeneity blockmodeling

	f-regular block
	In a f-regular block, for each row and column of the valued adjacency matrix the function f returns at least the value m.
	In a f-regular block, the function f returns the same value for each row as well as the same value for each column of the valued adjacency matrix. The results for the rows are not necessarily equal to the results for the columns.

	complete block
	Every cell of the block from the valued adjacency matrix holds at least the value m.
	All cells within a complete block have the same value.

	row-f-regular block
	In a row-f-regular block, the function f returns at least the value m in every row of the block.
	The function f returns the same value for every row in a row-f-regular block.

	row-dominant block
	A row-dominant block has at least one row in the block that exhibits at least the value m in each of its cells.
	In a row-dominant block there is at least one row within the block with equal cell values.

	row-functional block
	A row-functional block features at least the value m exactly once in each row. The row sums of the block are m.
	All rows of a row-functional block have exactly one cell with the same value that is greater than 0, all other cells are 0.
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Figure 1: Relationship between block types
[image: image38.emf]E

D C

A B

a

e

c

d

b

f

 [image: image39.emf]E

C D

A B

a

c

d

f

e

b


Figure 2: Adjacency matrix before and after two-mode blockmodeling
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Figure 3: Valued adjacency matrix before and after valued two-mode blockmodeling
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� Triangulation is used for identifying the production hierarchy (production stages) by allowing for the transaction volume of the (weighted) relational data in input-output analysis. It enables (quantitative) structural analysis, yet with the drawback of an unstable order of production stages if the production relations are non-linear. This instability rises with decreasing linearity of the relational data. It might also happen that (directly) unrelated vertices are strung together through triangulation (Holub & Schnabl, 1985). 


� An example of such vertices is the distinction between the relations of a vertex to its ancestors and its successors.
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